Copied to
clipboard

?

G = C42.157D10order 320 = 26·5

157th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.157D10, C10.312- (1+4), C10.1352+ (1+4), C20⋊Q838C2, C4⋊C4.114D10, C42.C213D5, D10⋊Q837C2, D102Q839C2, C20.6Q830C2, (C2×C10).243C24, (C2×C20).190C23, (C4×C20).224C22, C4.D20.14C2, (C2×D20).38C22, C2.60(D48D10), D10.13D4.4C2, C4⋊Dic5.245C22, C22.264(C23×D5), D10⋊C4.43C22, C54(C22.57C24), (C2×Dic5).125C23, (C4×Dic5).156C22, (C2×Dic10).43C22, C10.D4.86C22, (C22×D5).108C23, C2.61(D4.10D10), C2.32(Q8.10D10), C4⋊C4⋊D538C2, (C5×C42.C2)⋊16C2, (C2×C4×D5).142C22, (C5×C4⋊C4).198C22, (C2×C4).207(C22×D5), SmallGroup(320,1371)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.157D10
C1C5C10C2×C10C22×D5C2×C4×D5D102Q8 — C42.157D10
C5C2×C10 — C42.157D10

Subgroups: 710 in 196 conjugacy classes, 91 normal (31 characteristic)
C1, C2 [×3], C2 [×2], C4 [×13], C22, C22 [×6], C5, C2×C4 [×3], C2×C4 [×4], C2×C4 [×8], D4, Q8 [×3], C23 [×2], D5 [×2], C10 [×3], C42, C42 [×2], C22⋊C4 [×10], C4⋊C4 [×2], C4⋊C4 [×4], C4⋊C4 [×10], C22×C4 [×2], C2×D4, C2×Q8 [×3], Dic5 [×6], C20 [×7], D10 [×6], C2×C10, C22⋊Q8 [×4], C22.D4 [×2], C4.4D4, C42.C2, C42.C2, C422C2 [×4], C4⋊Q8 [×2], Dic10 [×3], C4×D5 [×2], D20, C2×Dic5 [×6], C2×C20 [×3], C2×C20 [×4], C22×D5 [×2], C22.57C24, C4×Dic5 [×2], C10.D4 [×6], C4⋊Dic5 [×2], C4⋊Dic5 [×2], D10⋊C4 [×10], C4×C20, C5×C4⋊C4 [×2], C5×C4⋊C4 [×4], C2×Dic10, C2×Dic10 [×2], C2×C4×D5 [×2], C2×D20, C20.6Q8, C4.D20, C20⋊Q8 [×2], D10.13D4 [×2], D10⋊Q8 [×2], D102Q8 [×2], C4⋊C4⋊D5 [×4], C5×C42.C2, C42.157D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C24, D10 [×7], 2+ (1+4), 2- (1+4) [×2], C22×D5 [×7], C22.57C24, C23×D5, Q8.10D10, D48D10, D4.10D10, C42.157D10

Generators and relations
 G = < a,b,c,d | a4=b4=1, c10=d2=a2b2, ab=ba, cac-1=a-1b2, dad-1=a-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=c9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 149 75 133)(2 160 76 124)(3 151 77 135)(4 142 78 126)(5 153 79 137)(6 144 80 128)(7 155 61 139)(8 146 62 130)(9 157 63 121)(10 148 64 132)(11 159 65 123)(12 150 66 134)(13 141 67 125)(14 152 68 136)(15 143 69 127)(16 154 70 138)(17 145 71 129)(18 156 72 140)(19 147 73 131)(20 158 74 122)(21 49 92 120)(22 60 93 111)(23 51 94 102)(24 42 95 113)(25 53 96 104)(26 44 97 115)(27 55 98 106)(28 46 99 117)(29 57 100 108)(30 48 81 119)(31 59 82 110)(32 50 83 101)(33 41 84 112)(34 52 85 103)(35 43 86 114)(36 54 87 105)(37 45 88 116)(38 56 89 107)(39 47 90 118)(40 58 91 109)
(1 43 65 104)(2 105 66 44)(3 45 67 106)(4 107 68 46)(5 47 69 108)(6 109 70 48)(7 49 71 110)(8 111 72 50)(9 51 73 112)(10 113 74 52)(11 53 75 114)(12 115 76 54)(13 55 77 116)(14 117 78 56)(15 57 79 118)(16 119 80 58)(17 59 61 120)(18 101 62 60)(19 41 63 102)(20 103 64 42)(21 145 82 139)(22 140 83 146)(23 147 84 121)(24 122 85 148)(25 149 86 123)(26 124 87 150)(27 151 88 125)(28 126 89 152)(29 153 90 127)(30 128 91 154)(31 155 92 129)(32 130 93 156)(33 157 94 131)(34 132 95 158)(35 159 96 133)(36 134 97 160)(37 141 98 135)(38 136 99 142)(39 143 100 137)(40 138 81 144)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 11 20)(2 19 12 9)(3 8 13 18)(4 17 14 7)(5 6 15 16)(21 28 31 38)(22 37 32 27)(23 26 33 36)(24 35 34 25)(29 40 39 30)(41 105 51 115)(42 114 52 104)(43 103 53 113)(44 112 54 102)(45 101 55 111)(46 110 56 120)(47 119 57 109)(48 108 58 118)(49 117 59 107)(50 106 60 116)(61 78 71 68)(62 67 72 77)(63 76 73 66)(64 65 74 75)(69 70 79 80)(81 100 91 90)(82 89 92 99)(83 98 93 88)(84 87 94 97)(85 96 95 86)(121 160 131 150)(122 149 132 159)(123 158 133 148)(124 147 134 157)(125 156 135 146)(126 145 136 155)(127 154 137 144)(128 143 138 153)(129 152 139 142)(130 141 140 151)

G:=sub<Sym(160)| (1,149,75,133)(2,160,76,124)(3,151,77,135)(4,142,78,126)(5,153,79,137)(6,144,80,128)(7,155,61,139)(8,146,62,130)(9,157,63,121)(10,148,64,132)(11,159,65,123)(12,150,66,134)(13,141,67,125)(14,152,68,136)(15,143,69,127)(16,154,70,138)(17,145,71,129)(18,156,72,140)(19,147,73,131)(20,158,74,122)(21,49,92,120)(22,60,93,111)(23,51,94,102)(24,42,95,113)(25,53,96,104)(26,44,97,115)(27,55,98,106)(28,46,99,117)(29,57,100,108)(30,48,81,119)(31,59,82,110)(32,50,83,101)(33,41,84,112)(34,52,85,103)(35,43,86,114)(36,54,87,105)(37,45,88,116)(38,56,89,107)(39,47,90,118)(40,58,91,109), (1,43,65,104)(2,105,66,44)(3,45,67,106)(4,107,68,46)(5,47,69,108)(6,109,70,48)(7,49,71,110)(8,111,72,50)(9,51,73,112)(10,113,74,52)(11,53,75,114)(12,115,76,54)(13,55,77,116)(14,117,78,56)(15,57,79,118)(16,119,80,58)(17,59,61,120)(18,101,62,60)(19,41,63,102)(20,103,64,42)(21,145,82,139)(22,140,83,146)(23,147,84,121)(24,122,85,148)(25,149,86,123)(26,124,87,150)(27,151,88,125)(28,126,89,152)(29,153,90,127)(30,128,91,154)(31,155,92,129)(32,130,93,156)(33,157,94,131)(34,132,95,158)(35,159,96,133)(36,134,97,160)(37,141,98,135)(38,136,99,142)(39,143,100,137)(40,138,81,144), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,28,31,38)(22,37,32,27)(23,26,33,36)(24,35,34,25)(29,40,39,30)(41,105,51,115)(42,114,52,104)(43,103,53,113)(44,112,54,102)(45,101,55,111)(46,110,56,120)(47,119,57,109)(48,108,58,118)(49,117,59,107)(50,106,60,116)(61,78,71,68)(62,67,72,77)(63,76,73,66)(64,65,74,75)(69,70,79,80)(81,100,91,90)(82,89,92,99)(83,98,93,88)(84,87,94,97)(85,96,95,86)(121,160,131,150)(122,149,132,159)(123,158,133,148)(124,147,134,157)(125,156,135,146)(126,145,136,155)(127,154,137,144)(128,143,138,153)(129,152,139,142)(130,141,140,151)>;

G:=Group( (1,149,75,133)(2,160,76,124)(3,151,77,135)(4,142,78,126)(5,153,79,137)(6,144,80,128)(7,155,61,139)(8,146,62,130)(9,157,63,121)(10,148,64,132)(11,159,65,123)(12,150,66,134)(13,141,67,125)(14,152,68,136)(15,143,69,127)(16,154,70,138)(17,145,71,129)(18,156,72,140)(19,147,73,131)(20,158,74,122)(21,49,92,120)(22,60,93,111)(23,51,94,102)(24,42,95,113)(25,53,96,104)(26,44,97,115)(27,55,98,106)(28,46,99,117)(29,57,100,108)(30,48,81,119)(31,59,82,110)(32,50,83,101)(33,41,84,112)(34,52,85,103)(35,43,86,114)(36,54,87,105)(37,45,88,116)(38,56,89,107)(39,47,90,118)(40,58,91,109), (1,43,65,104)(2,105,66,44)(3,45,67,106)(4,107,68,46)(5,47,69,108)(6,109,70,48)(7,49,71,110)(8,111,72,50)(9,51,73,112)(10,113,74,52)(11,53,75,114)(12,115,76,54)(13,55,77,116)(14,117,78,56)(15,57,79,118)(16,119,80,58)(17,59,61,120)(18,101,62,60)(19,41,63,102)(20,103,64,42)(21,145,82,139)(22,140,83,146)(23,147,84,121)(24,122,85,148)(25,149,86,123)(26,124,87,150)(27,151,88,125)(28,126,89,152)(29,153,90,127)(30,128,91,154)(31,155,92,129)(32,130,93,156)(33,157,94,131)(34,132,95,158)(35,159,96,133)(36,134,97,160)(37,141,98,135)(38,136,99,142)(39,143,100,137)(40,138,81,144), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,28,31,38)(22,37,32,27)(23,26,33,36)(24,35,34,25)(29,40,39,30)(41,105,51,115)(42,114,52,104)(43,103,53,113)(44,112,54,102)(45,101,55,111)(46,110,56,120)(47,119,57,109)(48,108,58,118)(49,117,59,107)(50,106,60,116)(61,78,71,68)(62,67,72,77)(63,76,73,66)(64,65,74,75)(69,70,79,80)(81,100,91,90)(82,89,92,99)(83,98,93,88)(84,87,94,97)(85,96,95,86)(121,160,131,150)(122,149,132,159)(123,158,133,148)(124,147,134,157)(125,156,135,146)(126,145,136,155)(127,154,137,144)(128,143,138,153)(129,152,139,142)(130,141,140,151) );

G=PermutationGroup([(1,149,75,133),(2,160,76,124),(3,151,77,135),(4,142,78,126),(5,153,79,137),(6,144,80,128),(7,155,61,139),(8,146,62,130),(9,157,63,121),(10,148,64,132),(11,159,65,123),(12,150,66,134),(13,141,67,125),(14,152,68,136),(15,143,69,127),(16,154,70,138),(17,145,71,129),(18,156,72,140),(19,147,73,131),(20,158,74,122),(21,49,92,120),(22,60,93,111),(23,51,94,102),(24,42,95,113),(25,53,96,104),(26,44,97,115),(27,55,98,106),(28,46,99,117),(29,57,100,108),(30,48,81,119),(31,59,82,110),(32,50,83,101),(33,41,84,112),(34,52,85,103),(35,43,86,114),(36,54,87,105),(37,45,88,116),(38,56,89,107),(39,47,90,118),(40,58,91,109)], [(1,43,65,104),(2,105,66,44),(3,45,67,106),(4,107,68,46),(5,47,69,108),(6,109,70,48),(7,49,71,110),(8,111,72,50),(9,51,73,112),(10,113,74,52),(11,53,75,114),(12,115,76,54),(13,55,77,116),(14,117,78,56),(15,57,79,118),(16,119,80,58),(17,59,61,120),(18,101,62,60),(19,41,63,102),(20,103,64,42),(21,145,82,139),(22,140,83,146),(23,147,84,121),(24,122,85,148),(25,149,86,123),(26,124,87,150),(27,151,88,125),(28,126,89,152),(29,153,90,127),(30,128,91,154),(31,155,92,129),(32,130,93,156),(33,157,94,131),(34,132,95,158),(35,159,96,133),(36,134,97,160),(37,141,98,135),(38,136,99,142),(39,143,100,137),(40,138,81,144)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,11,20),(2,19,12,9),(3,8,13,18),(4,17,14,7),(5,6,15,16),(21,28,31,38),(22,37,32,27),(23,26,33,36),(24,35,34,25),(29,40,39,30),(41,105,51,115),(42,114,52,104),(43,103,53,113),(44,112,54,102),(45,101,55,111),(46,110,56,120),(47,119,57,109),(48,108,58,118),(49,117,59,107),(50,106,60,116),(61,78,71,68),(62,67,72,77),(63,76,73,66),(64,65,74,75),(69,70,79,80),(81,100,91,90),(82,89,92,99),(83,98,93,88),(84,87,94,97),(85,96,95,86),(121,160,131,150),(122,149,132,159),(123,158,133,148),(124,147,134,157),(125,156,135,146),(126,145,136,155),(127,154,137,144),(128,143,138,153),(129,152,139,142),(130,141,140,151)])

Matrix representation G ⊆ GL8(𝔽41)

3928000000
132000000
0039280000
001320000
00009000
00000900
0000298320
0000315032
,
00100000
00010000
400000000
040000000
0000174000
000012400
00009201740
00003932124
,
31316350000
10126110000
63510100000
61131290000
00003312727
00001516142
000036351133
000037333922
,
31316350000
121030350000
35631310000
11612100000
00003312727
0000018214
0000243311
000029262239

G:=sub<GL(8,GF(41))| [39,13,0,0,0,0,0,0,28,2,0,0,0,0,0,0,0,0,39,13,0,0,0,0,0,0,28,2,0,0,0,0,0,0,0,0,9,0,29,31,0,0,0,0,0,9,8,5,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,32],[0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,17,1,9,39,0,0,0,0,40,24,20,32,0,0,0,0,0,0,17,1,0,0,0,0,0,0,40,24],[31,10,6,6,0,0,0,0,31,12,35,11,0,0,0,0,6,6,10,31,0,0,0,0,35,11,10,29,0,0,0,0,0,0,0,0,33,15,36,37,0,0,0,0,1,16,35,33,0,0,0,0,27,14,11,39,0,0,0,0,27,2,33,22],[31,12,35,11,0,0,0,0,31,10,6,6,0,0,0,0,6,30,31,12,0,0,0,0,35,35,31,10,0,0,0,0,0,0,0,0,33,0,2,29,0,0,0,0,1,18,4,26,0,0,0,0,27,2,33,22,0,0,0,0,27,14,11,39] >;

47 conjugacy classes

class 1 2A2B2C2D2E4A···4G4H···4M5A5B10A···10F20A···20L20M···20T
order1222224···44···45510···1020···2020···20
size111120204···420···20222···24···48···8

47 irreducible representations

dim11111111122244444
type+++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2D5D10D102+ (1+4)2- (1+4)Q8.10D10D48D10D4.10D10
kernelC42.157D10C20.6Q8C4.D20C20⋊Q8D10.13D4D10⋊Q8D102Q8C4⋊C4⋊D5C5×C42.C2C42.C2C42C4⋊C4C10C10C2C2C2
# reps111222241221212444

In GAP, Magma, Sage, TeX

C_4^2._{157}D_{10}
% in TeX

G:=Group("C4^2.157D10");
// GroupNames label

G:=SmallGroup(320,1371);
// by ID

G=gap.SmallGroup(320,1371);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,758,219,268,1571,570,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=a^2*b^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽